C-H activation and metalation at electrode surfaces: 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) studied by TLE, HREELS and DFT.

نویسندگان

  • Alnald Javier
  • Ding Li
  • Juan Cruz
  • Elizabeth Binamira-Soriaga
  • Perla B Balbuena
  • Manuel P Soriaga
چکیده

Previous studies, based on thin-layer electrochemistry (TLE), in situ scanning tunneling microscopy (EC-STM), high-resolution electron energy loss spectroscopy (HREELS) and density functional theory (DFT) computations, on the chemical adsorption of hydroquinone from aqueous solutions onto atomically smooth Pd (and Pt) electrode surfaces indicated two modes of attachment that depended upon the solution concentration. At low activities, the diphenol was oxidatively chemisorbed as benzoquinone in a flat orientation, suggestive of a Pd(2,3,5,6-η-C6H4O2) surface complex; at higher concentrations, vertical chemisorption was effected via two C-H bond activations (or metalations) at the 2 and 3 ring positions, evocative of an o-phenylene organopalladium compound. We have extended the work to 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) electrodes to probe the effect of two methyl substituents on only one side of the diphenol ring. Surface coverage and adsorbed-molecule cross section data from TLE and HREELS measurements revealed non-random concentration-dependent adsorbate orientations similar to the oxidative chemisorption of hydroquinone: flat at low concentrations and edgewise at elevated concentrations. The DFT results suggested that, for the flat structure, surface coordination is via the two double bonds of the quinone ring as in [Pd(2,3,5,6-η)-2,3-dimethyl-p-quinone]. For the edge-vertical orientation, a structure analogous to an o-phenylene compound is generated in which C-H bonds at the 5 and 6 ring positions are activated and then metalated. DFT-simulated HREELS spectra helped identify the observed peaks that distinguish the surface-coordinated quinone from the surface-metalated diphenol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemisorption and Electrochemical Activity of Thiophenols at Well - Defined Pd ( 111 ) Surfaces : Studies by LEED , AES , HREELS , and

The chemisorption and electrochemical activity of 2,5-dihydroxythiophenol (DHT) and 2-(8mercaptooctyl)-1,4-benzenediol (DHOT) on well-defined Pd(111) surfaces were studied by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), high resolution electron energyloss spectroscopy (HREELS), and electrochemistry (EC). Results confirm that DHT is chemisorbed in two discrete orien...

متن کامل

Mechanistic insights on ethanol dehydrogenation on Pd-Au model catalysts: a combined experimental and DFT study.

In this study, we have combined ultra-high vacuum (UHV) experiments and density functional theory (DFT) calculations to investigate ethanol (EtOH) dehydrogenation on Pd-Au model catalysts. Using EtOH reactive molecular beam scattering (RMBS), EtOH temperature-programmed desorption (TPD), and DFT calculations, we show how different Pd ensemble sizes on Au(111) can affect the mechanism for EtOH d...

متن کامل

Hydrogen adsorption on palladium and palladium hydride at 1bar

The dissociative sticking probability for H2 on Pd films supported on sputtered Highly Ordered Pyrolytic Graphite (HOPG) has been derived from measurements of the rate of the H–D exchange reaction at 1 bar. The sticking probability for H2, S, is higher on Pd hydride than on Pd (a factor of 1.4 at 140 C), but the apparent desorption energy derived from S is the same on Pd and Pd hydride within t...

متن کامل

Interaction of CO with Surface PdZn Alloys

The adsorption and bonding configuration of CO on clean and Zn-covered Pd(111) surfaces was studied using Low Energy Electron Diffraction (LEED), Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS). LEED and TPD results indicate that annealing at 550 K is sufficient to induce reaction between adsorbed Zn atoms and the Pd(111) surface resulting ...

متن کامل

CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions

The electrochemistry of CO on a bare Pt(111) electrode as well as a Pt(111) electrode modified with pseudomorphic thin palladium films has been studied in alkaline solution by means of Fourier transform infrared (FTIR) spectroscopy. First Pd films were prepared and well characterized in UHV and subsequently transferred into the electrochemical cell for the registration of the voltammetric profi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 39  شماره 

صفحات  -

تاریخ انتشار 2014